Електрика

Диммер для светодиодной ленты своими руками

Диммер для светодиодной ленты, и не только…

Автор: Игорь Парунин, egor-palunin@rambler.ru
Опубликовано 07.09.2012.
Создано при помощи КотоРед .

Рецепт приготовления красивого диммера, с простой, но очень полезной, начинкой.

Для приготовления диммера нам потребуется:

Не глубокая розетка (советская). Накладная или под-штукатурная, выбираете по вкусу или месту применения.

Пластиковая крышечка от пищевого продукта, продукт выбираете по своему вкусу, а вот с крышечкой следуйте рецепту.

Ручка регулировки, от какого либо старого приемника, в мое «блюдо» очень хорошо вписалась ручка настройки на волну от приемника «ВЭФ».

Материнская плата от компьютера.

Так… подробности о крышечке. Она должна очень точно подойти под диаметр углубления в декоративной накладке на электроарматуру или вовсе его перекрывать на небольшую величину. Далее… разбираем розетку на составляющие и из получившейся кучи берем только металлическую арматуру с креплениями, декоративные накладку и рамку. В декоративной накладке по центру есть отверстие для крепежного винта. Нам необходимо рассверлить это отверстие до диаметра оси потенциометра, который мы будем применять. В моем случае был потенциометр со стандартной осью, выдернутый из какой-то китайской автомагнитолы, прихвеченой по случаю на каком-то стихийном мусорном отвале.

Ручку настройки от приемника необходимо вклеить внутрь крышечки от пищевого продукта, соблюдая правила симметрии.

Из материнской платы, аккуратно выпаиваем пару транзисторов, которые прячутся, как правило, в области с большими конденсаторами и дросселями. Мне попались IPB09N03LA. Производители материнских плат прям как в воду глядели.

Далее это все надо скомпоновать, и определить геометрию монтажной платы. Я использую для этого плотный картон, шило и ножницы. Это процесс весьма занимательный, творческий и художественный. У меня получилось вот так.

Теперь переходим к начинке.

Схема (Рис.1) представляет собой самый обычный мультивибратор (VT1, VT3 ), только дополненный переменным резистором R3 и транзистором VT2. Переменным резистором изменяется скважность импульсов генерируемых мультивибратором. Период следования импульсов можно считать постоянным, во всем диапазоне регулирования, и длительность его составляет 70µС. Это значение выбрано для того чтобы нагрузка не «звенела». Если звон не смущает, то период можно значительно увеличить, тем самым облегчить жизнь транзистору VT4 .

В качестве силового элемента применен полевой транзистор с изолированным затвором (VT4 ). Очень часто можно встретить эти транзисторы под названиями MOSFET, МОП или МДП. Еще их могут обзывать P-FET и N-FET, а иногда HEXFET. Как и биполярные транзисторы бывают разной структуры (n-p-n, p-n-p ), так и МОП-транзисторы бывают N-типа и P-типа. В данной схеме применен транзистор с индуцированным каналом N-типа (N-chenl). Да… а есть еще и с встроенным каналом. Как их распознать на схеме, показано на рисунке (смотрим Рис.2). Так чем нам так приглянулся именно с индуцированным каналом? А тем, что управляющее напряжение, при котором транзистор надежно закрыт и хорошо открыт, не покидает области положительных напряжений. То есть, им проще управлять, как раз то, что нам и нужно. И не требуется двухполярного источника питания, как раз того, чего у нас нет.

Затвор транзистора представляет собой почти обычный конденсатор и управление транзистором происходит величиной заряда этого конденсатора. Транзистор, в нашей схеме, работает в ключевом режиме. Поэтому для уменьшения потерь на транзисторе во время открытия и закрытия, емкость затвора надо «тягать» очень быстро. Чем мы ее быстрей зарядим, тем быстрей транзистор полностью откроется, и наоборот. Для этих целей как нельзя лучше подходит двухтактный каскад на комплементарных транзисторах. Именно он и «запихнут» во все интегральные драйверы управления. Ну а мы обошлись своим, на «рассыпухе», и в данной ситуации ничуть не потеряли от этого. Для этого мы дополнили мультивибратор еще одним транзистором VT2. Транзисторы мультивибратора VT1, VT3. работают в паре, поочередно открываясь и закрываясь. Но транзистор VT1 имеет еще и «прицеп». Открываясь, транзистор VT1 «тащит» за собой VT2. Когда закрыт транзистор VT3. открыт транзистор VT2. и на оборот. Таким образом, транзисторы VT2 и VT3 образуют двухтактный драйверный каскад для управления транзистором VT4. Достоинство такого каскада очевидно – отсутствует пассивная фаза в управлении силовым МОП-транзистором, мы всегда на него «давим» (…открывайся! закрывайся…) не позволяя ему, расслабится. Создавая низкоомные, разрядную и зарядную цепи, для емкости затвора VT4. транзисторами VT2 и VT3. От этого и ему лучше, и для дела пользы больше.

Диапазон изменения коэффициента заполнения D. составляет от 1% до 90%. На завершающих 10% угла поворота оси потенциометра происходит заклинивание мультивибратора в устойчивом состоянии. Происходит это из-за асимметрии нагрузок в плечах мультивибратора (сопротивление R1 против сопротивления открытого VT3 ). При этом транзистор VT2 закрыт, а транзисторы VT1 и VT3 открыты. Напряжение на затворе силового транзистора VT4 «намертво» подтягивается к +11,4 Вольта, и он остается открытым постоянно. При этом на вашу нагрузку поступает постоянное напряжение источника питания.

В схеме можно применить и Р-канальные «мосфеты», при этом местами меняются только транзистор и нагрузка (смотрим рис. 3). Крайние выводы переменного резистора тоже необходимо поменять местами, в противном случае увеличение яркости будет происходить при вращении оси потенциометра против часовой стрелки, что не совсем удобно. На последних 10% поворота оси потенциометра, нагрузка будет — надежно отключатся, это тоже весьма удобно в некоторых случаях.

Диод VD1 необходим в случае подключения к регулятору индуктивной нагрузки. Например, коллекторного двигателя печки в авто. В особо ответственных случаях диодами необходимо зашунтировать и переходы исток-затвор силовых транзисторов. Внешний диод включается параллельно «штатному» диоду, который интегрирован в сам транзистор. Такой прием позволяет снизить нагрев транзистора при большом уровне отрицательного импульсного напряжения и увеличивает надежность устройства в целом, потому как встроенные диоды не совсем диоды, а некий неизбежный элемент эквивалентной схемы МОП-транзистора, подогнанный под — «типа нужный диод». На примере транзистора VT5. показано как легко масштабируется схема по току нагрузки. Количество силовых транзисторов, при сохранении типа транзисторов VT2 и VT3. можно увеличить до трех. Если требуется больше, то VT2 и VT3 необходимо заменить на КТ814 и КТ815 соответственно. Элементы схемы С1, R8, С2, VD1. при димировании активной нагрузки (лампы накаливания, светодиодной ленты) существенно важной роли не играют, и могут быть исключены из схемы.

Параллельное включение силовых транзисторов имеет смысл и не только для увеличения предела коммутируемого диммером тока, но и для уменьшения габаритных размеров устройства и снижения тепловыделения на силовых транзисторах. При параллельном включении внутренние сопротивления открытых транзисторов складываются по параллельному правилу. Давайте придумаем, что мы применили транзисторы с сопротивлением канала равным 17,5 милиом (оказались заурядными умниками и просто купили в магазине IRFZ44N). Таким образом при токе нагрузки равным трем амперам (что вполне в рамках бытовых нужд) на транзисторе будет рассеиваться мощность в 175 миливатт и этого будет достаточно для того чтоб применить небольшой радиатор охлаждения. При включении параллельно двух транзисторов суммарное сопротивление транзисторов в цепи коммутируемого тока составить 8,75 милиом. А суммарная рассеиваемая мощность на транзисторах составит 78,75 мливатт, по 40 миливат на каждый. И транзисторы могут вполне себе обойтись и без радиаторов. Особенно выгодным это оказывается при монтировании устройства в под-штукатурной электро-коробке, Таким вот образом, наше расточительство сыграло нам на руку.

ЗЫ. Чертеж печатной платы я решил не приводить, потому как вам наверняка потребуется разработать свой дизайн, под свои ингредиенты и целевую нагрузку… Удачи!